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Velocity, mixture fraction and temperature spectra obtained from five direct numerical
simulations of non-reacting and reacting shear layers, using the infinitely fast chemistry
approximation, are analysed. Two different global chemical reactions corresponding to
methane and hydrogen combustion with air, respectively, are considered. The effect of
heat release, i.e. density variation, on the inertial and dissipation turbulence subrange
of the spectra is investigated. Analysis of the database supports the experimentally
available measurements of spectra in turbulent reacting flows showing that heat
release effects can be scaled out by utilizing Favre-averaged (density-weighted) large-
scale turbulence quantities. This is supported by the simulation results for velocity and
mixture fraction in our moderate-Reynolds-number flows but it appears to be less
supported in the dissipation subrange of the temperature spectra. The departure from
universal scaling using Favre-averaged quantities in the temperature spectrum, which
is evident in the dissipation subrange, appears to be caused by the strong nonlinearity
of the state relationship relating the mixture fraction to the temperature, as has been
suggested previously. These effects are less pronounced at intermediate wavenumbers.
Analysis suggests that the nonlinear state relationship and the spectra of mixture
fraction moments can be used to reconstruct the temperature spectrum across the
flow. Moreover, the governing equation for the temperature variance is analysed
to identify a possible surrogate for the overall rate of dissipation of temperature
fluctuations and their corresponding dissipation length scale. This scaling analysis is
then used to separate planes across the shear layer where the temperature dissipation
length scale is alike that of the mixture fraction from regions where smaller length
scales are present, and are evidenced in the dissipation subrange using Kolmogorov
scaling. In our simulations, these regions correspond to the centre of the shear layer
and the mean flame location. The new estimate for the temperature dissipation length
scale is able to collapse the compensated spectra profiles at all planes across the shear
layer for all simulations.

1. Introduction
The turbulence scales in reacting flows differ from those in non-reacting flows by

the presence of density (and temperature) variations throughout the flow that not only
alter momentum exchanges but also modify the transport coefficients of the fluid. The
difference between the enthalpies of formation of the reactants and products leads
to heat release which increases the temperature and decreases the density. The ratio
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between the temperature of the cold reactant streams and that of the hot products
is roughly 4–6 for hydrocarbon combustion in gas turbine combustors and roughly
7 for room temperature reactant streams. As is well known, heat release induces
changes on the dynamics of the large scales of the turbulence, possibly coupling
with buoyancy effects if the Richardson number, the ratio of potential energy to
kinetic energy, of the flame is sufficiently large. This is relatively well understood
from available quantitative measurements of instantaneous and averaged velocity
profiles in a good number of canonical and practical flows. Nevertheless, less is
known regarding the behaviour of the small scales of turbulence in the presence
of heat release. Apart from a fundamental interest in the problem, the small scales
are important because combustion in most practical regimes takes place always at
finite rates within these small scales. When the spatial and temporal scales of the
chemical conversion become comparable to those of the turbulence, e.g. in flames,
there is ‘turbulence–combustion interaction’, that is, strong coupling between turbulent
fluctuations and the reaction progress occurs. Turbulent combustion modelling that
attempts to eliminate the details of the internal structure of the flames is challenging
and it requires a deeper understanding of the dynamics and spatial structure of the
interaction. This affects modelling in large-eddy simulation (LES), where the low-
wavenumber turbulence spectrum is accurately simulated but the small scales are
modelled, and in transported probability density function (p.d.f.) approaches, where
closure for the molecular transport terms is required (Pope 1985). In this paper, we
discuss only results pertaining to heat release effects in the non-premixed mode of
combustion, where reactants are initially segregated and mixing is a fundamental
requirement of the chemical conversion. We utilize the flame-sheet approximation,
which assumes that the chemical reaction occurs on a time scale much shorter than the
smallest relevant time scale of the flow and essentially imposes a one-way coupling
between chemistry and turbulence accounting solely for heat release effects. This
helps isolate phenomena that are purely caused by the heat released in the flow and
eliminates the complex, but important, flame structure changes and dynamics present
in real flames close to the extinction/reignition regime, which are not considered here.

Theoretical analyses of the structure of the reaction zone in stationary conditions
range from the infinitely-fast-chemistry limit of Burke & Schumann (1928) (see
also Williams 1985) to the more accurate models describing details of the internal
structure of the flame using large-activation-energy asymptotics for one-step kinetics
(Liñán 1974) and multi-step kinetics (Seshadri & Peters 1988). In turbulent flames,
understanding the chaotic dynamics of the velocity and the complex system of
chemical reactions is a challenging problem (Peters 1984; Bilger 1988). Theoretical
studies identify the rate of dissipation of mixture fraction fluctuations, referred to
as the ‘scalar dissipation’ for simplicity, as an important quantity relating mixing to
chemistry. The role of other quantities – including the strain rate field, chemistry
details, detailed transport properties and unstationarity – remains an open issue. The
scalar dissipation is defined as χ = 2D∇Z ·∇Z, where D is a suitable average diffusion
coefficient. We follow the customary approach to define χ based on Z instead of
its fluctuation, an approximation that is good for high-Reynolds-number flows. In
reacting flows D can vary substantially in different regions of the flow owing to
its dependence on temperature. Experimental investigations of the behaviour of the
statistics of χ include, for example, Namazian, Schefer & Kelly (1988); Gladnick,
LaRue & Samuelsen (1990); Boyer & Queiroz (1991); Nandula, Brown & Pitz (1994);
Everest et al. (1995); Chen & Mansour (1996); Buch & Dahm (1998); Fielding,
Schaffer & Long (1998); Karpetis & Barlow (2002); Tsurikov & Clemens (2002); Su
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& Clemens (2003); Barlow & Karpetis (2004); Noda et al. (2005); Wang, Clemens
& Varghese (2005); and Markides & Mastorakos (2006). Complementary numerical
studies, primarily using direct numerical simulations (DNS), have also verified some of
the experimental findings, e.g. Vedula, Yeung & Fox (2001); Schumacher, Sreenivasan
& Yeung (2005); and Donzis, Sreenivasan & Yeung (2005). Reviews by Warhaft
(2000), Bilger (2004), Sreenivasan (2004), and Dimotakis (2005) discuss many of the
known features associated with χ , primarily for non-reacting flows.

Experimental diagnostic advances are now capable of simultaneous measurements
of species and temperature in non-premixed turbulent flows and they have provided a
dramatic improvement of our understanding of the chemical conversion process and
the internal structure of real turbulent flames. It is known from previous studies that
reaction takes place on thin surface-like flames even for jets at high Reynolds numbers
(e.g. Dibble, Masri & Bilger 1987; Seitzman et al. 1990; Everest et al. 1995; Masri,
Dibble & Barlow 1996; Donbar, Driscoll & Carter 1999; Meier et al. 2000). It has
been shown that heat release diminishes the rate of growth of turbulent shear flows
when compared with equivalent non-reacting flows (Wallace 1981; McMurtry et al.
1986; Hermanson & Dimotakis 1989; Muñiz & Mungal 2001; Theron & Bellenoue
2006; Mahle et al. 2007). Modelling concepts have been developed to relate the effect
of heat release, or density variation, on these flows (Tacina & Dahm 2000; Dahm
2005). Moreover, numerous experimental and computational studies have elucidated
that the structural behaviour – specifically the composition and the flow around non-
premixed flames – is substantially different from that observed in non-reacting flows
(Donbar, Driscoll & Carter 1998; Vervisch & Poinsot 1998; Han & Mungal 2000,
2003). These changes are more prominent at the smallest scales of the flow for non-
premixed combustion since the process is mixing limited. For large flow-to-chemical
time scale ratio (Damköhler number) the flame thickness is small with respect to the
Kolmogorov scale and the effect on the flow is essentially equivalent to a finite heat
release deposition around the stoichiometric surface. The temperature and density
gradients around the peak heat release zone are very small because the profiles
exhibit a peak there. Recent progress allowing measurement of both composition
and flow velocity at the reaction zone (Carter, Donbar & Driscoll 1998; Rehm &
Clemens 1998; Han & Mungal 2003) is providing a more comprehensive picture of the
details of the turbulence–combustion interaction in these flows. This paper provides
complementary results on the behaviour of turbulence spectra in reacting flows where
the level of heat release is large, typical of hydrocarbon/hydrogen combustion. The
effects of heat release on the inertial and dissipation subranges of the velocity, mixture
fraction and temperature spectra are investigated. While it is expected that many (if
not most) aspects of these spectra should resemble that of non-reacting flows, some
details emerge to be different primarily owing to the heat release effect, e.g. changes of
the statistics of χ with heat release have already been investigated (Pantano, Sarkar &
Williams 2003). The implications and importance of spectra in modelling of reacting
flows is discussed further by Sabini, Shieh & Givi (1996).

Statistical arguments applied to the turbulence energy cascade (Richardson 1922)
by Kolmogorov (1941a ,b) assume that, for sufficiently high Reynolds numbers, the
statistics of the small scales of motion have a universal form uniquely determined by
the turbulence rate of dissipation, ε̃, and the kinematic viscosity, ν̃. Additionally, the
statistics of the scales of motion between the integral and dissipative scales have a
universal form determined uniquely by ε̃, independent of ν̃ (e.g. Tennekes & Lumley
1972; Pope 2000). Tildes are used to denote density weighted averages to maintain a
uniform notation throughout the text with ε̃ and ν̃ reverting to their incompressible
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values for constant density flows. The large scales, low-wavenumber range of the
energy spectrum, are widely recognized to depend on the problem geometry and as
such they are not relevant to the present discussion. In this paper we are concerned
with the study of the effect of heat release on the scalings proposed by Kolmogorov’s
theory in the inertial and in the dissipation subrange of the turbulence spectra of
reacting flows. It is common to model turbulent reacting flows by neglecting the effect
of heat release on the behaviour of the small turbulence scales. This assumption builds
on results by Kolmogorov (1961) who extended his previous theory by considering
the turbulence dissipation as a spatially varying quantity with a certain (intermittent)
statistical distribution to support the mounting experimental evidence that ε̃ is not
constant throughout the flow (Batchelor & Townsend 1949). It is then shown that
the turbulence spectrum is only weakly affected by the non-uniformity of ε̃ (Monin
& Yaglom 1971). Therefore, one could extend this theoretical framework to reacting
flows and assume that the changes in viscosity by heat release could be factored out as
part of the statistical variations of ε̃. This argument appears plausible in the inertial
subrange but it is less convincing in the dissipation subrange, where variations of ν̃

induced by heat release may need to be taken into account.
Theoretical results have so far concentrated on the spectra of active scalars but with

negligible heat release (Corrsin 1961; Bilger 1980; Bilger, Saetran & Krishnamoorthy
1991; Kosály 1993). A more detailed numerical investigation of the behaviour of the
spectra of reactive scalars has been reported by de Bruyn Kops, Riley & Kosály
(2001), where the effect of varying Damköhler number is investigated. Experimental
measurements of spectra of reactive flows remain scarce in contrast to non-reacting
flows (e.g. Uberoi & Freymuth 1969; Wygnanski & Fielder 1969; Birch et al. 1978;
Dowling & Dimotakis 1990; Antonia & Mi 1993). Furthermore, in those cases where
some data is available, it is often limited to a few quantities (Kounalakis, Sivathanu
& Faeth 1991; Renfro et al. 2000) usually not including the velocity field, except
for Zhang, Wang & Tong (2004) who reported velocity-scalar increment p.d.f.. The
experimental measurements by Wang et al. (2005) and Nagel & Dahm (2007) have
been used to investigate the effects of variable density on the turbulence spectra. Their
results suggest that after appropriate scaling the effect of heat release on the inertial
turbulence scales is remarkably small. Moreover, given that this part of the spectrum
is energetically dominant (contains most of the temperature variance), deviations
owing to heat release in the dissipation subrange should only account for a small
amount of the overall spectral transfer, that is, the total variance of the mixture
fraction is relatively insensitive to deviations in the dissipation subrange compared to
either energy-containing or inertial subrange. From a different point of view, previous
results by Everest et al. (1995) suggest that mixing effects may explain differences in
chemical composition in some stages of jet flames, while Wang, Karpetis & Barlow
(2007) argue that there is sufficient spectral separation between the temperature
fluctuations affecting ν̃ and the strain rate to prevent a strong interaction in the
dissipation subrange. Kaiser & Frank (2007) and Frank & Kaiser (2008) report
measurements of the temperature dissipation spectrum including cutoff length scales
for a turbulent reacting jet. Frank & Kaiser (2008) finds that non-reacting estimates
for the cutoff length scale are comparable on the centreline but were significantly
less accurate off-centreline. Experiments by Wang & Barlow (2008) measured the
dissipation cutoff length scale of the temperature field and found it to be equal to
or lower than the corresponding length scale for the mixture fraction. Additionally,
experiments by Wang et al. (2008) observed enhanced high-wavenumber content for
the temperature spectrum. They argue that this results from the temperature state
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relationship T e(Z). The argument is that the temperature exhibits a local peak each
time the mixture fraction crosses the stoichiometric mixture fraction, which in turn
causes the temperature field to exhibit smaller scale structures than the mixture
fraction. At locations far away from stoichiometry, the state relation is nearly linear
and thus the cutoff scale of the temperature spectrum is nearly that of the mixture
fraction. The present study provides further simulation-derived evidence supporting a
reduction of the dissipation length scale of the temperature owing to heat release and
a collapse of the velocity and mixture fraction spectra using Favre-averaged scaling.

2. Flow description
The flow considered in this study is a temporally evolving reacting shear layer

between fuel and oxidizer streams. This flow was simulated using DNS for
different fuels and at different levels of heat release. The numerical formulation
of the compressible Navier–Stokes equations with the infinitely-fast-chemistry
approximation is used. High-order spatial and temporal discretization is employed to
solve the governing equations; further details can be found in Pantano et al. (2003).
The coordinate directions are denoted as x = (x1, x2, x3) = (x, y, z), corresponding to
the streamwise, transverse and spanwise directions, respectively. Periodic boundary
conditions are imposed in the x1 and x3 directions.

2.1. Simulation parameters

Three flow conditions are analysed in this study: a non-reacting case (labelled
simulation A), three methane–air cases with global reaction CH4+2O2 → CO2+2H2O
(referred to as simulations B, C and C′) and a hydrogen–air case with global reaction
H2 + 1

2
O

2
→ H2O (labelled simulation D). The viscosity μ was assumed constant

except for case C′ that assumed μ(T ) ∼ T 0.7. The oxidizer stream in each simulation
consists of a mixture of oxygen and nitrogen with a mass fraction of oxygen equal to
0.23 to approximate air. The fuel stream consists of a mixture of methane (simulations
B, C and C′) or hydrogen (simulation D) diluted with nitrogen. The corresponding fuel
mass fractions are 0.23 for methane and 0.06666 for hydrogen with stoichiometric
mixture fraction of Zs = 0.2 and 0.3, respectively. These values correspond to an
equivalence ratio, φ = (1 − Zs)/Zs , of 4 and 2.3333, respectively. The reactant streams
were diluted with air in order to allow convenient resolution of temperature gradients
on the fuel side of the shear layer. In this case, the dilution moves the flame closer
to the centre of the shear layer where there would be greater interaction between the
turbulence and the heat release. Studies by Clemens & Paul (1995) and Pickett &
Chandhi (2003), among others, show that the reaction zone still stands to one side of
the mixing layer even at these relatively high stoichiometric mixture fraction values, a
behaviour that is similar to that of combustion of pure hydrocarbons with air (having
a lower Zs).

Additionally, the temperature of the oxidizer stream in the methane–air simulations
was raised by roughly 20 % in order to achieve constant density of both free streams.
In the case of the hydrogen–air simulation, the temperature of both free streams
was equal, leading to a fuel stream with substantially lower density. Simulations B
and C are documented in more detail in Pantano et al. (2003) (also denoted there as
simulations B and C). The same formulation and computer code was used to perform
the new simulations A and D.

Thermochemical parameters of the ideal-gas mixture were non-dimensionalized
using a reference temperature of To = 298 K and the specific heat coefficient of
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Species C0
p C1

p W �h0/CpOo
To

H2 15.9201 0.4737 2 0
CH4 2.4655 0.8743 16 −17.149
O2 1.0000 0.0639 32 0

H2O 2.0110 0.2187 18 −49.814
CO2 0.9347 0.1321 44 −33.168
N2 1.1397 0.0553 28 0

Table 1. Thermochemical parameters normalized by the reference temperature To = 298 K
and the reference specific heat of oxygen at this temperature CpOo

= 905 J kg−1K−1.

oxygen, CpO2
, at To. The specific heat coefficients of species were given a linear

dependence on temperature, Cpi =C0
pi + C1

pi(T − 1), valid over the temperature range
of interest (300–2300 K) in accordance with thermochemical data (Lide 1999), where
T denotes the non-dimensional temperature. The standard enthalpy of formation is
denoted by �h0

i and molecular weight is Wi for species i (see table 1). Finally, the
heat release parameter is defined by

Q =
qoYF,f Zs

CpNo
ToνF WF

, (2.1)

where subscript F denotes fuel properties, with YF,f denoting the mass fraction of
fuel in the fuel stream and νF denoting the stoichiometric coefficient of the fuel in
the global reaction. The enthalpy of the reaction is defined as

qo =
∑

νiWi�ho
i . (2.2)

The adiabatic flame temperature Tf is obtained from the isobaric energy conservation
equation and varies with Q and the chemistry details (Williams 1985).

Simplified transport properties were used in the simulations to focus attention on a
few key phenomena. Accordingly, the viscosity μ is taken to be constant in all cases but
C′. The independence of the viscosity on the temperature makes ‘relaminarization’ of
the flow less important at the Reynolds numbers considered here. There is nonetheless
a reduction in Reynolds number corresponding to decreases in density near the flame
in cases B, C and D. In the hydrogen–air case especially, there would be significant
changes in the dynamic viscosity owing to the heat release which are neglected in this
approximation. The scalar diffusion coefficient D was chosen such that the Schmidt
number Sc = μ/ρD was constant and equal to 1.0 in case A and 0.7 in the remaining
simulations. The thermal conductivity κ was chosen such that the Prandtl number
Pr = μCp/κ was also constant and equal to 0.7, the approximate value for air,
resulting in a constant Lewis number Le = Sc/Pr = 1.0 in all the reacting simulations.
The species mass fractions Yi were assumed to have identical diffusion coefficients,
which in the infinitely-fast-chemistry limit allows Yi to be related uniquely to the
mixture fraction (Burke & Schumann 1928). This choice also eliminates the effects
of differential diffusion in the simulations which is expected to be small in regard to
the effect of heat release on the flow dynamics for fast methane–air and hydrogen–
air combustion. The initial Reynolds number is defined as Re = ρo�uδω,o/μ, where
ρo denotes the average of the free-stream densities, �u is the velocity difference
between the two streams and the initial vorticity thickness, defined below, is denoted
as δω,o. The convective Mach number of all the simulations based on the free-stream
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Case A (air) B (methane–air) C–C′ (methane–air) D (hydrogen–air)

Q – 3.73 7.46 7.90
Tf – 4.20 6.82 6.73
Nx 768 768 768 2048
Ny 258 258 258 512
Nz 192 192 192 512
Lx/δω,o 31 31 31 92
Ly/δω,o 20 20 20 29
Lz/δω,o 8 8 8 23

Table 2. Initial parameters of the simulations.

conditions was set to 0.3 to minimize any effect owing to compressibility. Further
initial parameters of the simulations are reported in table 2.

The simulations were initialized with a hyperbolic-tangent profile for the velocity
and mixture fraction that matched the fixed free-stream parameters defining the
conditions of the simulations, from where all other derived quantities can be inferred.
Incompressible velocity fluctuations with a model isotropic turbulence spectrum are
added to the laminar initial conditions to help the flow transition to turbulence
as quickly as possible. The shear layer thickness grows approximately linearly with
time and the simulations are stopped when domain size effects become apparent.
This is visible in two-point correlations of the streamwise velocity which cease to be
completely decorrelated for large separations. Further details can be found in Pantano
et al. (2003).

2.2. Statistics

The statistics of the shear layer are obtained as density-weighted (Favre) averages,
defined for a field ψ(x) as

ψ̃ =
ρψ

ρ
, (2.3)

where the overline indicates ensemble (Reynolds) average. All statistics, ψ̃ or ψ̄ ,
depend on x2 for the shear layer flow considered here. Additionally, every field can
be decomposed into a mean and fluctuating component denoted by ψ ′ = ψ − ψ and
ψ ′′ = ψ − ψ̃ for Reynolds and Favre fluctuations, respectively. Favre-based averages
are used throughout the presentation when scaling quantities are required, unless
stated otherwise. This ensures that all non-dimensional terms revert naturally to their
incompressible counterparts when the density of the flow is constant and uniform.

The Reynolds number based on the vorticity thickness is defined as

Reω,cold =
ρo�uδω

μo

, Reω,hot =
�uδω

νh

, (2.4)

where ρo and μo denote the average of the cold free-stream densities and viscosity,
respectively, and νh denotes the maximum planar average kinematic viscosity. The
vorticity thickness δω is defined according to

δω =
�u∣∣Su

∣∣
max

, (2.5)
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with

Su =
∂ũ1

∂x2

, SZ =
∂Z̃

∂x2

, ST =
∂T̃

∂x2

, (2.6)

denoting the streamwise velocity, mixture fraction and temperature gradients,
respectively.

The turbulence kinetic energy is defined by

k̃ =
ũ′′

mu′′
m

2
, (2.7)

and the turbulence dissipation is defined by

ε̃ =
1

ρ

(
σ ′

ik

∂u′
i

∂xk

)
, (2.8)

where σ ik is the Newtonian stress tensor. The scalar dissipation is defined by

χ̃ =
2

ρ̄

(
ρD

∂Z′

∂xk

∂Z′

∂xk

)
. (2.9)

Using these quantities, the Kolmogorov scale is defined as

η̃ =

(
ν̃3

ε̃

)1/4

, (2.10)

where ν̃ = μ/ρ. The Taylor-scale Reynolds number is determined through the isotropic
relationship

ε̃ = 15ν̃
u′2

λ2
= 5ν̃

q

λ2
, (2.11)

where q is the turbulence intensity defined by q =
√

2k̃/3. This gives the Taylor-scale
Reynolds number,

Reλ =
qλ

ν̃
= 2k̃

√
5

ν̃ε̃
. (2.12)

Finally, the Reynolds number based on the integral scale � is defined according to

Re� =
q�

ν̃
=

3

20
Re2

λ, (2.13)

where � is the integral scale (e.g. Pope 2000). All results reported in this paper are
obtained at the end of these simulations, before domain size effects become visible
in two-point statistics. Therefore, no further references to time will be made below
since all analysed quantities are concerned with the spatial structure of the turbulent
flow at a fixed time. Some key final simulation parameters are shown in table 3.
These denote the resolution, final Kolmogorov-to-grid size ratio and peak integral
and Taylor microscale Reynolds number.

Figure 1 shows average profiles of streamwise velocity, mixture fraction, density
and temperature for all simulations at the last instant of time, where spectra will be
analysed in the following sections. The average streamwise velocity profile ũ1 has a
hyperbolic-tangent-like profile that is qualitatively similar in all simulations and is
also similar between the average mixture fraction profiles. The specific value of Zs in
the reacting cases induces an asymmetry in the average velocity and mixture fraction
profiles, with the value of ũ1 = 0 and Z̃ = 0.5 occurring slightly closer to the oxidizer
stream. The average density profile has a minimum towards the oxidizer side of the
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Case A B C C′ D

Reω,cold 6057 12, 600 10, 400 68, 743 24, 138
Reω,hot 6057 4447 2446 3890 5264
Re�,peak 1915 1622 1008 1685 1782
Reλ,peak 113 104 82 106 109
ηmin/�x 0.45 0.36 0.46 0.23 0.61
(x2/δω)s – 0.3335 0.3406 0.3516 0.1687

Table 3. Derived parameters of the simulations at the end of the runtime. The subscript ‘peak’
denotes the maximum planar average value of the quantity in the shear layer. The last row
denotes the location of the mean stoichiometric surface Z̃((x2/δω)s) = Zs.
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Figure 1. Average profiles of velocity (a), mixture fraction (b), density (c) and temperature
(d) for all simulations.

shear layer where the flame tends to be located in average. The temperature of the
oxidizer stream in the methane–air simulations was set to achieve equal density in
the fuel and oxidizer free streams. This was not done for the hydrogen case. The profile
in the hydrogen case shows a significant density difference between the oxidizer and
fuel streams. In all cases, the density reaches a minimum near the mean stoichiometric
mixture fraction plane, although slightly shifted towards the fuel side. The temperature
profile in each case has a peak on the oxidizer side of the shear layer with a magnitude
that is controlled by the stoichiometry of the mixture.

Figure 2 shows mixture fraction, density and temperature variances as well as
turbulence kinetic energy for all simulations. The variance of the mixture fraction
peaks at the centre of the shear layer, where the turbulence kinetic energy also peaks,
and decreases as one moves away from the centre of the shear layer. The density and
temperature variance profiles have two peaks on each side of the centre of the shear
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Figure 2. Mixture fraction (a), density (b) and temperature (c) variances and turbulence
kinetic energy (d) profiles for all simulations.
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Figure 3. Level of unmixedness across the shear layer for all simulations.

layer with the profiles decreasing towards the free streams. These two different peaks
are caused by the asymmetric temperature gradients in the shear layer induced by
the stoichiometry of the mixture. Figure 3 shows the level of unmixedness, usually
defined as

I (x2/δω) =
Z̃′′2

Z̃(1 − Z̃)
,

across the shear layer for all simulations. This index is zero when the flow is perfectly

mixed, Z̃′′2 = 0, and one when the flow is completely unmixed. In the simulations,
I is below 0.55 at the centre of the shear layer for all cases, indicating that substantial
mixing is taking place. Finally, figure 4 shows the turbulence and scalar dissipation
for all simulations. It is shown that all profiles peak towards the centre of the shear
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Figure 4. Normalized turbulence (a) and scalar (b) dissipation profiles for all simulations.

layer. There is a slight shift of the scalar dissipation peak towards the location of the
average stoichiometric mixture fraction value, which is more pronounced for case B.

3. Spectra
The one-dimensional spectra of velocity, mixture fraction and temperature as well

as the cospectra between velocity and mixture fraction and velocity and temperature
were extracted from the simulations for analysis. While the two-dimensional spectrum
is of general interest, in practice only the one-dimensional (line) spectrum has been
investigated exhaustively experimentally. We refer to the line autospectrum as the
spectrum for simplicity throughout the paper from this point onwards, unless stated
otherwise. Results at different planes across the shear layer (various x2) are reported
in order to study the behaviour of the spectrum at different representative locations.
The following planes were investigated for the reacting cases: P0 corresponding to
the plane of peak mixture fraction variance (generally very close to the centre of the
shear layer) and marked in the figures with circles, P1 corresponding to the plane
of the lower peak of density variance and marked with diamonds, P2 corresponding
to the plane of the higher peak of density variance and marked with triangles and
Ps denoting the plane where the Favre-averaged mixture fraction Z̃(x2) equals the
stoichiometric mixture fraction value Zs , which are marked by squares. The planes
P1, P2 and Ps are not defined in the non-reacting simulation A. Therefore, in this
case, P0 was defined as the centre of the shear layer for the non-reacting case (making
comparisons with the reacting simulations straightforward) while P1 and P2 denote
the locations where Z̃(x2) takes the values of the stoichiometric mixture fraction in the
methane and hydrogen case, denoted by left and right triangles, respectively. Finally,
it was observed that normalization of the wavenumber with η̃ and the spectra with
ε̃ and χ̃ helped collapse the spectra of all simulations in the inertial and sometimes
in the dissipation subrange (at all investigated planes across the shear layer). For
this reason, it was deemed appropriate to use this scaling in all figures appearing
in the next sections. Note that it is not claimed here that the Favre averages are
the only, or the most appropriate, averaging technique one could use to scale all
spectra under all circumstances. It is only observed that using the standard Favre-
averaged quantities for the turbulence and mixture fraction dissipation was sufficient
to collapse the turbulence energy and mixture fraction spectra. The only ambiguity
that remains is the definition of the Kolmogorov scale in (2.10) since there are several
possible manners to define an average kinematic viscosity, ν̃, for a variable density
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flow. It was observed that using the Reynolds-averaged version μ/ρ or the alternative
Favre-averaged version μ̄/ρ̄ produced indistinguishable results.

3.1. Turbulence energy spectra

The one-dimensional turbulence energy spectrum is defined by

E1D(κ1) =
1

2

(
F 1D

uu + F 1D
vv + F 1D

ww

)
, (3.1)

where each term on the right-hand side denotes the power-spectrum of the u, v and w

velocity components, respectively, according to (3.1). Following Kolmogorov theory,
the scaling of the turbulence spectra for incompressible flows approximately obeys a
−5/3 power-law in wavenumber. This can be extended to variable density flows by
assuming

E1D(κ1) = CKε̃2/3κ
−5/3
1 e−βκ1η̃, (3.2)

where CK is a proportionality constant, approximately equal to 1.6. The approximately
exponential decay of the spectrum in the dissipation subrange or roll-off, as
initially suggested by Kraichnan (1959), has also been included in this scaling
for completeness. Figure 5 shows the one-dimensional energy spectra taken in the
streamwise wavenumber direction for all simulations and planes considered in this
study. It is observed that the spectra bends gradually and it appears to have a well-
defined dissipation subrange in all the simulations but there is no unequivocal inertial
(−5/3) subrange in these simulations, although the Reynolds number is moderately
high. It is observed that the profiles are well collapsed using the Favre-based scaling
statistics (see discussion below for plane P1 of case C′). These results are in agreement
with those reported recently by Nagel & Dahm (2007).

Further investigation of the behaviour of E1D in the dissipation subrange is better
accomplished by plotting the compensated spectrum, which represents κ

5/3
1 E1D in

logarithmic coordinates (figure 6) or linear-logarithmic coordinates (figure 7). The
latter exposes the approximately exponential decay of the dissipation subrange.
Figure 6 indicates that the inertial subrange, if present, is rather short, and generally
valid conclusions about the behaviour of the inertial subrange cannot be inferred
from the present data. The data appears to collapse in the intermediate range of
wavenumbers but a power-law behaviour is not indisputable. Furthermore, it is
observed that the agreement between the model spectra, (3.2) with CK =1.6, for case
A is not as good as the comparisons with the reactive cases. The reasons for this
discrepancy are not known at this point but it may be worth recalling that the non-
reactive shear layer exhibits large-scale organized structures which are not seen in the
reactive cases (Brown & Roshko 1974) and their presence may require a somewhat
different value of the scaling factor CK than that used in the figures. Figure 7 shows
results for all cases at all planes, indicating that the exponential decay rate, (3.2), is
close to the experimental value of β ≈ 5.2 (Saddoughi & Veeravalli 1994). There is
a rather small amount of variability in β for all the reacting cases as opposed to
the non-reacting case which shows negligible variation across planes. In general, all
cases exhibit a remarkable good collapse in the dissipation subrange, and the small
amount of variability supports the conjecture that Kolmogorov’s scaling holds for
the turbulent reacting shear layer remarkably well, even at planes of the shear layer
located relatively close to the free streams. The simulation results suggest that heat
release does not affect the velocity spectra in a significant manner when rescaled in
terms of Favre-averaged statistics. This observation does not imply that the large
scales of the flow are not affected by the variations in density throughout the domain.
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Figure 5. Energy spectra at different planes across the shear layer at the end of simulations.
P0 (�), P1 (� for case A and � for cases B, C, D and C′), P2 (� for case A and � for cases B,
C, D and C′) and Ps (�).

We remark that plane P1 of case C′ is somewhat less resolved than other planes and
the other simulations. This is observed in the dissipation subrange of plane P1 (see
figures 5e and 7e) where only the first 2/3 of the subrange collapses to an exponential
decay. This is also reflected in table 3 that lists ηmin/�x as being half that of simulation
C, the latter being well resolved. This is a limitation of the choice of parameters made
for case C′ to attempt to match case C as closely as possible, in terms of the resolution
and thermodynamic parameters, while keeping the Reynolds number high enough.
A simulation with temperature-dependent viscosity that matched the cold Reynolds
number of simulation C would have an effectively lower local turbulence Reynolds
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Figure 6. Compensated energy spectra in logarithmic coordinates at different planes across
the shear layer at the end of simulations. P0 (�), P1 (� for case A and � for cases B, C, D and
C′), P2 (� for case A and � for cases B, C,D and C′) and Ps (�). Solid line is the theoretical
spectrum given by (3.2).

number, across the shear layer, owing to the increase of viscosity caused by the increase
in temperature induced by the combustion. The lower turbulence Reynolds number of
such hypothetical simulation would have prevented close statistical comparison with
the rest of the data analysed in this study. Therefore, the simulation parameters were
chosen as a compromise between the resolution we could afford and the turbulence
physics being investigated. This turned out to affect some of the statistics of the
effectively high local Reynolds number side of the shear layer, i.e. the P1 plane, while
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Figure 7. Compensated energy spectra in linear-logarithmic coordinates at different planes
across the shear layer at the end of simulations. P0 (�), P1 (� for case A and � for cases B,
C, D and C′), P2 (� for case A and � for cases B, C, D and C′) and Ps (�).

the other planes appear to be well resolved. For these reasons, the results pertaining
to plane P1 of simulation C′ will be excluded from this point onwards.

3.2. Mixture fraction spectra

The mixture fraction spectrum E1D
Z (κ1) has been normalized in agreement with the

scaling (Tennekes & Lumley 1972)

E1D
Z ∝ χ̃ ε̃−1/3κ

−5/3
1 e−βZκ1η̃, (3.3)
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Figure 8. Mixture fraction spectra at different planes across the shear layer at the end of
simulations. P0 (�), P1 (� for case A and � for cases B, C, D and C′), P2 (� for case A and �

for cases B, C, D and C′) and Ps (�).

where βZ is the roll-off constant for the mixture fraction. Figure 8 shows the
normalized spectra and figure 9 shows the compensated spectra from all simulations
at all planes across the shear layer. In general, the behaviour of the mixture fraction
spectrum is very similar to that of the turbulence energy spectrum, even in the cases
with substantial heat release. In all simulations, the Schmidt number is close to unity
(Sc = 1 in case A and 0.7 in all reacting cases) and therefore use of the Kolmogorov
scale instead of the Obukhov–Corrsin scale has a negligible impact on the plots.
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Figure 9. Compensated mixture fraction spectra in linear-logarithmic coordinates at different
planes across the shear layer at the end of simulations. P0 (�), P1 (� for case A and � for
cases B, C, D and C′), P2 (� for case A and � for cases B, C, D and C′) and Ps (�).

A scaling similar to that of the energy spectrum is supported by a large body of
experimental and computational results in incompressible flows. The −5/3 scaling
has been observed previously in the temperature field of gas-phase turbulent jets
(Dowling & Dimotakis 1990; Dowling 1991) and in jet flames (Wang et al. 2005;
Nagel & Dahm 2007). Inertial scaling is suggested in experiments by Dowling &
Dimotakis (1990) and Su & Clemens (2003), even at Reynolds numbers as low as
3000, and by many others. Similar results are suggested by others using DNS of
passive (Overholt & Pope 1996) and active (de Bruyn Kops et al. 2001) scalars. We
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observe little difference between non-reacting and reacting cases when the spectrum
is normalized using Favre-averaged quantities. The same behaviour is observed for
the compensated spectrum in figure 9, with results that are completely analogous to
those previously discussed for the energy spectrum.

3.3. Velocity–mixture fraction cospectra

We conclude this section with the analysis of the spectra of the turbulent fluxes, C1D
u1Z

,

C1D
u2Z

and C1D
u1u2

, between velocity and mixture fraction. In the temporal shear layer,
only the streamwise and the vertical velocity components lead to non-zero turbulent
fluxes. Cross-spectra with the spanwise velocity component is negligible owing to the
homogeneity of the flow in that direction. In our simulations QuiZ appeared to be
practically zero and it was not possible to ascertain its magnitude from the simulation
data. Note that QuiZ is zero for a scalar in isotropic turbulence (O’Gorman & Pullin
2003).

Lumley (1967) predicted that, by similarity analysis, the cospectrum of a passive
scalar mixing in a homogeneous turbulent field in the presence of mean scalar gradient
takes the form

C1D
u1Z

∝ −SZε̃1/3κ
−7/3
1 , (3.4)

in the inertial-convective subrange, where SZ is the mean scalar gradient.
Experimental measurements by Mydlarski & Warhaft (1998) investigated the one-
dimensional velocity–temperature cospectrum and found a wavenumber dependence
of approximately κ−2

1 for Reλ = 582. Further experimental measurements in another
study by Mydlarski (2003) in the range of Reλ = 85 to 582 reveal a tendency towards
the theoretical limit of Lumley as the Reynolds number increases. A purely passive
scalar case was investigated by O’Gorman & Pullin (2003) who reported approximately
κ

−7/3
1 scaling for Schmidt numbers of order unity by using sparse direct-interaction

perturbation (Kida & Goto 1997) and closer to κ−2
1 from their DNS at Reλ = 265.

Finally, a recent EDQNM study by Bos, Touil & Bertoglio (2005) predicts that the
asymptotic result of Lumley is achieved only at very high Reynolds numbers.

The majority of the referenced works on the turbulence flux cospectrum consider
mixing of a scalar with a mean gradient in isotropic non-reacting turbulence. In
the case of the shear layer, two mean gradients are present, one associated with
the streamwise velocity Su and a second associated with the mixture fraction SZ .
Therefore, for consistency, one should consider a spectrum scaling that is dependent
not only on SZ but also on Su. Fortunately, for the case of the shear layer, these two
quantities are essentially indistinguishable, with SZ ≈ Su/�u ≈ S at all times, except
during the initial non-turbulent transient stage of the evolution of the shear layer
which is not of interest at present. Figures 10, 11 and 12 show normalized cospectra
for all the simulations at all the planes considered which supports the conjecture
that a single mean gradient is relevant in the scaling. It is observed that the profiles
collapse to some degree in the middle of the wavenumber range but there is too
much statistical variability as the wavenumber increases to ascertain their behaviour.
Nevertheless, it is observed that the profiles are very similar in all cases, reactive
and non-reactive simulations, and the large density variations in these flows are
not sufficient to affect the normalized spectra. There is some degree of variability
among the case, which we attribute to the differences in Reynolds numbers between
cases. Note that the statistical convergence of the cospectra is lower than that of the
autospectra discussed in the previous sections. At high wavenumbers, the cospectra
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Figure 10. Cospectra C1D
u1Z

at different planes across the shear layer at the end of simulations.

Solid line corresponds with κ−7/3 in the inertial-convective subrange. P0 (�), P1 (� for case A
and � for cases B, C, D and C′), P2 (� for case A and � for cases B, C, D and C′) and Ps (�).

were not sufficiently converged to ensure positive values of the normalized profiles,
and this shows as missing data points in the plots.

Figures 13, 14 and 15 show compensated cospectra for all the simulations. This
representation accentuates the middle of the wavenumber range. As in the case of the
turbulence energy spectra, the profiles curve gradually and it is not possible to infer
unequivocally the presence of a κ

−7/3
1 inertial-convective subrange. This is consistent

with the experimental evidence suggesting that the asymptotic scaling is present only
at higher Reynolds numbers than those considered in the present simulations.
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Figure 11. Cospectra C1D
u2Z

at different planes across the shear layer at the end of simulations.

Solid line corresponds with κ
−7/3
1 in the inertial-convective subrange. P0 (�), P1 (� for case A

and � for cases B, C, D and C′), P2 (� for case A and � for cases B, C, D and C′) and Ps (�).

4. Temperature
The statistics of the temperature field are of particular importance in reacting

flows as temperature couples with radiation and other heat transfer phenomena
in combustion processes. In the reacting fast chemistry limit and assuming unit
Lewis number (equal diffusivity and heat conduction) and low Mach number, the
temperature can be related to the mixture fraction uniquely by a so-called state
function T = T e(Z). This relationship is obtained from the energy equation of this two-
stream system by neglecting pressure variations and viscous dissipation throughout
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Figure 12. Cospectra C1D
u1u2

at different planes across the shear layer at the end of simulations.

Solid line corresponds with κ
−7/3
1 in the inertial-convective subrange. P0 (�), P1 (� for case A

and � for cases B, C, D and C′), P2 (� for case A and � for cases B, C, D and C′) and Ps (�).

the flow, giving

h =

N∑
i=1

Yi(Z)hi(T ) =

N∑
i=1

Yi(Z)

(
�ho

i +

∫ T

1

Cpi(T
′)dT ′

)
= ho + (hf − ho)Z, (4.1)

where N is the total number of species in the gas mixture, and ho and hf denote the
enthalpy of the oxidizer and fuel streams, respectively. This equation defines T e(Z),
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Figure 13. Compensated C1D
u1Z

cospectra in logarithmic coordinates at different planes

across the shear layer at the end of simulations. Solid line corresponds with κ−7/3 in the
inertial-convective subrange. P0 (�), P1 (� for case A and � for cases B, C, D and C′), P2 (�
for case A and � for cases B, C, D and C′) and Ps (�).

which at Z =Zs gives the adiabatic flame temperature Tf . This nonlinear function,
shown in figure 16 for all simulations, depends on the free-stream composition and
thermodynamic properties of the mixture (Williams 1985).

It will be convenient in follow-up developments to consider a simplified piecewise
linear approximation to (4.1) that exposes explicitly the dependence of the temperature
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Figure 14. Compensated C1D
u2Z

in logarithmic coordinates at different planes across the shear

layer at the end of simulations. Solid line corresponds with κ
−7/3
1 in the inertial-convective

subrange. P0 (�), P1 (� for case A and � for cases B, C, D and C′), P2 (� for case A and �

for cases B, C, D and C′) and Ps (�).

on the mixture fraction. The general relationship is implicitly defined by (4.1) but it
can be simplified to

T e(Z) =

{
1 + Q̄φZ Z � Zs,

1 + Q̄(1 − Z) Z >Zs,
(4.2)
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Figure 15. Compensated C1D
u1u2

in logarithmic coordinates at different planes across the shear

layer at the end of simulations. Solid line corresponds with κ
−7/3
1 in the inertial-convective

subrange. P0 (�), P1 (� for case A and � for cases B, C, D and C′), P2 (� for case A and �

for cases B, C, D and C′) and Ps (�).

where Q̄ is the average heat release parameter obtained by defining average specific
heats according to

C̄pi =
1

Tf − 1

∫ Tf

1

Cpi(T
′)dT ′, (4.3)

giving

Q̄ =
ho + (hf − ho)Zs −

∑N

i=1 Yi(Zs)�ho
i

φZs

∑N

i=1 Yi(Zs)C̄pi

. (4.4)
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Figure 16. Normalized temperature state relationship T = T e(Z), (4.1), for case B (dash-dot
line), case C and C′ (dashed line) and case D (solid line).

A small error is introduced by this approximation when taking the temperature of
the free streams to be equal to 1 in simulations B, C and C′. This error is between
2.5 % and 4 % of the adiabatic flame temperature in these simulations and is within
the approximation error introduced by using the average heat release parameter Q̄

of (4.4) in (4.2).

4.1. Temperature variance

The temperature spectra, which were not discussed in the previous sections, contain the
information of the two-point statistics, length scales, of the temperature fluctuations
T ′. The average of the spectra equals to the Reynolds-averaged temperature variance
T ′2. It is common to neglect distinguishing between T ′2 and the Favre-averaged

temperature variance T̃ ′′2 when discussing the spectra of T ′ since the transport

equation of T̃ ′′2 has a more convenient form in variable-density flows. The difference
between the Reynolds and Favre-averaged variances is

T̃ ′′2 = T ′2 +
ρ ′T ′2

ρ̄
−

(
ρ ′T ′

ρ̄

)2

. (4.5)

The last two terms in the right-hand side of (4.5) are not generally zero. In our

simulations, the peak T̃ ′′2 is larger than T ′2 by approximately 11 %, 15 % and 20 %
for cases B, C and D, respectively. Therefore, this implies that a small inconsistency is
introduced when the spectra of T ′ is normalized with Favre-averaged statistics. This is
in part unavoidable because the rate of dissipation, which is utilized in the scalings, of
T ′2 has expressions and interpretations that are not as convenient and unequivocal as
the Favre-averaged counterparts for variable-density flows. This problem also affects
the turbulence energy and mixture fraction spectra discussed in the previous sections,
but given the level of statistical noise in the profiles and narrow range of Reynolds
number of the flows it is not possible to appreciate an effect in the figures. Therefore,
from this point onwards we will consider the spectra of T ′ scaled on statistics deduced

from T̃ ′′2, since a more consistent approach has yet to be developed.
An expression for the rate of dissipation of temperature fluctuations, χT , needs to

be obtained in order to derive scaling statistics for the reacting flows considered in
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this study. The value of χT is related to the rate of dissipation of mixture fraction
χ , since T = T e(Z). Everest et al. (1995) defines χT such that it is analogous to χ ,
according to

χT = 2D∇T · ∇T = 2D∇Z · ∇Z

(
dT e

dZ

)2

= χ

(
dT e

dZ

)2

, (4.6)

where D is the diffusion coefficient of the mixture fraction. Equation (4.6) neglects
the contribution to χT from the average temperature profile, which is small at high
Reynolds numbers. One question to be answered is whether this is the only quantity
responsible for the destruction of temperature fluctuations under the infinitely-fast-
chemistry approximation. This matters because of its relationship to the length scales
of the temperature field.

Let us consider the conservation equation for T̃ ′′2, which can be obtained from the
conservation equation for the mixture fraction, given by

ρ
DZ

Dt
= ∇ · (ρD∇Z). (4.7)

Now, multiply (4.7) by the derivative of T e(Z) with respect to Z to obtain

ρ
dT e

dZ

DZ

Dt
= ρ

DT

Dt
=

dT e

dZ
∇ · (ρD∇Z). (4.8)

Rearranging the right-hand side gives

ρ
DT

Dt
= ∇ · (ρD∇T ) − 1

2
ρχ

d2T e

dZ2
, (4.9)

where the last term is analogous to the result derived by Bilger (1980) relating the
rate of production of species to the scalar dissipation in the infinitely fast chemistry
case. Note that the last term in (4.9) is not zero, even if T is a piecewise linear
function of Z, because the curvature of the temperature profile in mixture fraction
space is very large at the stoichiometric surface, e.g. infinitely large in the infinitely
fast chemistry limit. This equation can then be used to derive the conservation

equation for T̃ ′′2 by the usual manipulation, giving

∂

∂t
(ρ̄T̃ ′′2) +

∂

∂xk

(
ρ̄ũkT̃ ′′2

)
= −2ρ̄ũ′′

kT
′′ ∂T̃

∂xk

− ∂

∂xk

(
ρ̄ ˜u′′

kT
′′2 + 2ρDT ′′ ∂T

∂xk

)
− ρ̄χ̃T − ρχT ′′ d

2T e

dZ2
. (4.10)

The last term appearing on the right-hand side of (4.10) is not present in the

analogous equation for the enthalpy variance h̃′′2 since h is a linear function of Z

(see (4.1)). Moreover, all the terms in (4.10) are present in the case of a passive scalar
except the last, which we chose to denote by

ρ̄χ̃ e
T = ρχT ′′ d

2T e

dZ2
. (4.11)

Negative χ̃ e
T implies a decreased rate of temperature variance dissipation, i.e. relative

production of temperature fluctuations. In flows at high Reynolds numbers, χ and
T ′′ are usually not strongly correlated but the large temperature curvature term at
the stoichiometric surface can lead to an overall average that is comparable to χ̃T .
This is true only if the probability of crossing the stoichiometric surface is high at
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Figure 17. The p.d.f. of the mixture fraction for case D at plane P0 (dashed line), P1 (solid
line), P2 (dash-dot-dot line) and Ps (dash-dot line).

the considered plane where averages are computed. Theoretically, both χ̃ e
T and χ̃T

can be fully determined using the Favre joint p.d.f. of mixture fraction and scalar
dissipation, P̃ (Z, χ), according to

χ̃T =

∫ 1

0

∫ ∞

0

χ

(
dT e

dZ

)2

P̃ (Z, χ) dχdZ =

∫ 1

0

(
dT e

dZ

)2

〈χ |Z〉P̃ (Z) dZ, (4.12)

and

χ̃ e
T =

∫ 1

0

∫ ∞

0

χ(T e(Z) − T̃ )
d2T e

dZ2
P̃ (Z, χ) dχdZ =

∫ 1

0

(T e(Z) − T̃ )
d2T e

dZ2
〈χ |Z〉P̃ (Z) dZ,

(4.13)
where P̃ (Z) is the one-point Favre p.d.f. of Z and 〈χ |Z〉 denotes the average scalar dis-
sipation conditioned on Z. In (4.13), the Favre average temperature is determined from

T̃ =

∫ 1

0

T e(Z)P̃ (Z) dZ. (4.14)

For simplicity, distinction between the state-space variables associated with Z and χ

in (4.12)–(4.14) is not made explicitly, but it is understood that the integration takes
place in state-space. Moreover, for notational simplicity, the dependence of P̃ (Z) on
x2 is implicitly assumed and it is not shown. Equations (4.12) and (4.13) reflect the
fact that the statistics of T are fully specified by those of Z and its derivatives. For
future reference, figure 17 shows the Reynolds-based p.d.f. of mixture fraction (i.e.
not remarkably different from the Favre-based p.d.f. in our simulations) at different
planes for simulation D. The Favre and Reynolds p.d.f. for cases A, B and C are
discussed in Pantano et al. (2003).

Assuming an infinitely thin reaction sheet, it is possible to show that χ̃ e
T , as defined

by (4.13), is always negative. Using (4.2) and (4.13) gives

χ̃ e
T = −Q̄(φ + 1)

∫ 1

0

(T e(Z) − T̃ )δ(Z − Zs)〈χ |Z〉P̃ (Z) dZ

= −Q̄(φ + 1)(Tf − T̃ )〈χ |Zs〉P̃ (Zs) < 0, (4.15)

since χ , (Tf − T̃ ) and P (Z) are positive quantities.
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Given that the statistics of T are determined completely from the statistics of Z

and the T e(Z) relationship, since the latter is fixed for a particular flow and does not
have a stochastic (randomness) component associated with it, it may be possible to
think of χ̃T and χ̃ e

T not as two independent terms in (4.10) but as a single effect on

T̃ ′′2. Under these assumptions an overall rate of dissipation, given by

χ̃∗
T = χ̃T + χ̃ e

T , (4.16)

may be a convenient statistic to scale the temperature spectra. Note that if the
temperature fluctuations are to behave according to physical expectation, production
of fluctuations from the mean gradient terms, first term in the right-hand side of
(4.10), should be balanced by a dissipative term corresponding to the overall χ̃∗

T .
Therefore, this term should be positive.

4.2. Temperature dissipation length scales

One difficulty when attempting to estimate the dissipation length scale of the
temperature fluctuations is that there is no well-defined diffusion coefficient for T .
Ideally, one would like to use the diffusion coefficient of the mixture fraction to
deduce one for the temperature. For example, the scaling

ρ̄χ̃ = 2D̃ρ(∇Z)2, (4.17)

could be assumed to serve as a definition of D̃. Analogously, a temperature ‘diffusion
coefficient’ D̃∗

T could be defined from

ρ̄χ̃∗
T = 2D̃∗

T ρ(∇T )2. (4.18)

The mean diffusion coefficients D̃ and D̃∗
T could then be used to define a modified

Schmidt number for the temperature, ScT , which is distinct from the well-defined
Prandtl number, according to

ScT = Sc
D̃

D̃∗
T

= Sc
χ̃

χ̃∗
T

ρ(∇T )2

ρ(∇Z)2
. (4.19)

Then ScT can be used to relate the Kolmogorov scale with passive mixing theories for
either the Obukhov–Corrsin scale when ScT < 1 or the Batchelor scale when ScT > 1.
Using these analogies, the dissipation subrange temperature fluctuation length scale
is given by

η̃T =

{
η̃Sc

−3/4
T ScT � 1,

η̃Sc
−1/2
T ScT > 1.

(4.20)

Alternatively, a spectral estimate of the dissipation length scale can be constructed
according to

η̃T ,sp =
0.26

κ1,peak

, (4.21)

where κ1,peak is the wavenumber of the peak of the dissipation spectrum
D1D

T = 2D∗
T κ2

1E
1D
T . This estimate is based on the observation that the scaled one-

dimensional constant-density turbulence spectrum peaks at approximately κ1η ≈ 0.26
(Pope 2000). One advantage of (4.21) is that the actual value of D∗

T does not play a
role in the resulting estimate.

Figure 18 shows ScT defined in (4.19) for all the simulations with heat release
(ScT =1 for case A). As can be seen, ScT increases around the mean stoichiometric
plane in all cases. This implies smaller temperature length scales there, consistent
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Figure 18. Temperature Schmidt number profiles across the shear layer for all cases.

Case P1 P2 P0 Ps

B 1.85 2.16 1.44 1.53
C 2 2 1.3 1.18
C′ 2.16 1.73 1.3 1.18
D 2.16 2.16 1.3 1.3

Table 4. Temperature dissipation length scale based on the spectral estimate η̃T ,sp normalized
with η̃.

with recent experimental results (Wang et al. 2008). Figure 19 shows the temperature
dissipation scale obtained through the passive scalar mixing analogy η̃T and the
Kolmogorov scale η̃ for all cases. It is observed that the combined effect of heat
release and variation of ScT leads to smaller length scales around the mean flame
location plane. Finally, table 4 lists the values of the ratio η̃T ,sp/η̃ for all reactive
flow simulations and the four planes investigated in this study. It is observed that the
P0 and Ps planes have consistently smaller values of η̃T ,sp with respect to η̃. This is
consistent with previous experimental observations (Kaiser & Frank 2007; Frank &
Kaiser 2008; Wang & Barlow 2008; Wang et al. 2008).

4.3. Temperature spectrum

The temperature spectrum calculated at planes close to the stoichiometric mixture
fraction plane were observed to have a reduced roll-off in the dissipation range.
This appears to be caused by a reduction in the characteristic length scale of the
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Figure 19. Temperature dissipation scale profiles across the shear layer for all cases.
Continuous line denotes η̃T and dash-dotted line denotes η̃.

temperature fluctuations owing to the effects of heat release. By analogy with (3.3),
the temperature spectrum could be assumed to take the form

E1D
T ∝ χ̃T ε̃−1/3κ

−5/3
1 e−βT κ1η̃, (4.22)

where χ̃T is the rate of temperature fluctuation dissipation and βT is an exponential
roll-off constant. This expression is a direct analogue of the mixture fraction spectrum
scaling and relies, implicitly, in the fact that T = T e(Z). Under these assumptions, it is
hoped that the spectrum will be similar to that of the mixture fraction. Alternatively,
one can use the temperature dissipation and length scales defined previously to scale
the spectra according to

E1D
T ∝ χ̃∗

T ε̃−1/3κ
−5/3
1 e−βT κ1η̃T . (4.23)

The scaling in (4.22) is used in figure 20 to show normalized temperature spectra for
simulations B, C, D and C′ at all planes across the shear layer. The temperature spectra
profiles appear to collapse reasonably well in the middle of the wavenumber range for
all cases and at all planes using χ̃T from (4.12). It is also observed that the profiles do
not collapse well within the dissipation subrange and the curves obtained at different
planes differ substantially. Figure 21 shows compensated temperature spectra in linear-
logarithmic coordinates which help distinguish the different behaviours exhibited at
the different planes for the same simulations. As can be seen, two sets of planes, P1

and P2, on one hand, and P0 and Ps , on the other hand, exhibit different slopes in
the dissipation subrange. The planes P0 and Ps show a reduced decay rate, smaller
scales, compared to the rate of decay of the mixture fraction spectra. Note that the
difference in scales between T and Z implies that the temperature spectra at P1 and
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Figure 20. Temperature spectra at different planes across the shear layer at the end of
simulations for planes P0 (�), P1 (�), P2 (�) and Ps (�).

P2 are similar to those of the mixture fraction (whose profiles approximately collapse
for all planes). In general, it appears that (4.22) is an accurate approximation of the
functional form of the spectrum with a value of βT that varies for different planes
across the shear layer. It is possible to compensate for this effect by redefining a
temperature length scale, akin to the Kolmogorov scale, which is mixture fraction
dependent, and remove the apparent dependence of βT on location in the turbulent
flow. While possible, this will ruin the good collapse observed in the middle of the
spectrum. That part of the spectrum does not appear to be affected to the same extent
by heat release.

Figures 22 and 23 show normal and compensated spectra scaled according to (4.23).
It is observed that both spectra collapse better using χ̃∗

T and ηT as the corresponding
scales. The collapse using the new statistics is relatively good for all cases and planes
but it is less satisfactory in the dissipation subrange of case D. Except in case D, the
figures support our rationale for utilizing an overall rate of temperature fluctuations
dissipation, χ̃∗

T , as the relevant scaling quantity. In order to explore the reasons for the
lack of collapse of the profiles in case D, an alternative approach is developed below
which does not rely on the existence of analogies based on passive scalar mixing
theories.

4.4. Relationship between temperature and mixture fraction spectrum

The relationship between the power-spectrum of a signal that is nonlinearly related
to a second signal with known spectrum has a well-known mathematical treatment in
signal processing (Thompson 1954; Shutterly 1963; Campbell 1964). This theory can
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Figure 21. Compensated temperature spectra in linear-logarithmic coordinates at different
planes across the shear layer at the end of simulations for planes P0 (�), P1 (�), P2 (�) and
Ps (�).

be adapted with some modifications that incorporate the specific details of our case.
As discussed by Shutterly (1963), the transformed spectrum can be expressed as an
infinite series of the spectra of the moments of the original signal. First, the mixture
fraction is decomposed into a mean and fluctuating component Z(x) = Z + Z′(x),
with Z̄ = Z(x2) denoting the average component and Z′(x) denoting the fluctuating
component. For simplicity, we will omit the dependence of the fields on x2 and time,
since these parameters are fixed throughout the derivations that follow, and utilize
Reynolds-averaged quantities. The one-dimensional correlation of the temperature is
then given by the infinite sum

Re1D
T (r1) =

∞∑
p,q,k,l=0

cpkcqlZ
p
Z

q

p!q!k!l!
Z′(x + e1r1)kZ′(x)l , (4.24)

where

cpk =

∞∑
ν=0

ανT e(p+k+ν)(Z), (4.25)

with

α0 = 1, α1 = −Z′ = 0, α2 = −Z′2

2!
, α3 = −Z′3

3!
,
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Figure 22. Temperature spectra at different planes across the shear layer at the end of
simulations for planes P0 (�), P1 (�), P2 (�) and Ps (�). The profiles are normalized with η̃T

and χ̃∗
T .

α4 = −Z′4

4!
+

Z′2 Z′2

2!2!
, α5 = −Z′5

5!
+

2Z′3 Z′2

3!2!
, (4.26)

and for ν � 4,

αν = −Z′ν

ν!
+

ν−1∑
r1=1

ν−r1∑
r2=1

Z′r1 Z′r2

r1!r2!

−
ν−2∑
r1=1

ν−r1−1∑
r2=1

ν−r1−r2∑
r3=1

Z′r1 Z′r2 Z′r3

r1!r2!r3!
+ · · · + (−1)νZ′ν. (4.27)

Using (4.24) and taking the Fourier transform term by term yields the temperature
spectrum in terms of spectrum of moments of the mixture fraction,

E1D
T (κ1) =

∞∑
p,q,k,l=0

cpkcqlZ
p
Z

q

k!p!q!l!
E1D

kl (κ1), (4.28)

with

E1D
kl =

(μ̂kμ̂
∗
l + μ̂∗

kμ̂l)

2
and μk = Z′k − Z′k. (4.29)

The temperature spectrum can thus be considered as a weighted sum of various
spectra, E1D

kl , of the mixture fraction fluctuation moments. Note that it is likely possible
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Figure 23. Compensated temperature spectra in linear-logarithmic coordinates at different
planes across the shear layer at the end of simulations for planes P0 (�), P1 (�), P2 (�) and
Ps (�). The profiles are normalized with η̃T and χ̃∗

T .

to express E1D
kl in terms of Fourier transform of the kl-order structure functions of Z′.

This formulation was developed for the case of one-dimensional spectra but the same
relationships apply for two- and three-dimensional spectra. This is the case because
(4.28) expresses a relationship between spectra and remains valid independently of
the power-spectrum being used, whether it is one-, two- or three-dimensional.

Considering the good collapse of the E1D
Z =E1D

11 spectra, shown in figure 8, the
lack of collapse of the temperature spectra in the dissipation subrange is therefore
a consequence of phase interactions of the Fourier modes of the mixture fraction
moments. Moreover, the magnitude of the weights, (4.25), depend on the p.d.f. of
mixture fraction P (Z). Figure 24 shows the normalized moments of the mixture
fraction fluctuation spectrum, which display similar behaviour to the E1D

Z spectrum
but with a slower decay in the dissipation subrange for the higher-order terms and a
faster decay in the inertial subrange of the mixture fraction spectrum for all terms.
A dimensionally based scaling of the E1D

kl spectra based on the scalar dissipation, the
turbulence dissipation and the wavenumber yields a −(3 + k + l)/3 power-law of the
spectrum in the inertial subrange, such that

E1D
kl ∝ χ̃ (k+l)/2ε̃−(k+l)/6κ

−(3+k+l)/3
1 . (4.30)

As shown in figure 24, there is no good collapse of the data for moment spectrum
with this scaling, except for the case k = l = 1 corresponding to (3.3). This is likely
caused by phase interactions occurring between different moments of the mixture
fraction fluctuations spectra.
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11 spectrum.

Regardless of the scaling of E1D
kl , it is now possible to reconstruct the temperature

spectrum using (4.28). This requires either the analytical function T = T e(Z) (see
figure 16) or an approximation to this expression. It was found that the series, (4.28),
was not overly sensitive to the accuracy of the state relationship, and a piecewise
linear approximation, (4.2), produced good results. Moreover, the derivative of (4.2) is
discontinuous at the stoichiometric surface, Z = Zs , which incidentally simplifies the
evaluation of the integrals, (4.25), which reduces to

T e(n)(Z) =

∫ 1−Z

−Z

T e(n)(Z′)P (Z′) dZ′ =

∫ 1

0

T e(n)(Z)P (Z) dZ, (4.31)

and gives the following expressions for the first four moments:

T (Z′) = T , (4.32)

T (1)(Z′) = Q̄

(
(φ + 1)

∫ Zs

0

P (Z) dZ − 1

)
, (4.33)

T (2)(Z′) = −Q̄(φ + 1)

∫ 1

0

δ(Z − Zs)P (Z) dZ = −Q̄(φ + 1)P (Zs), (4.34)

T (3)(Z′) = −Q̄(φ + 1)

∫ 1

0

δ(1)(Z − Zs)P (Z) dZ = Q̄(φ + 1)P ′(Zs). (4.35)

It was found that only a few moments in (4.28) were required to recover an
approximation of the temperature spectrum from the spectra of the moments of
the mixture fraction. In the process of implementing these formulas it was found
that the accuracy of the p.d.f. P (Z) extracted from the simulations and shown in
figure 17 was inadequate to prevent statistical noise from polluting the evaluation
of the derivative required in (4.35). Therefore, a wavelet-based filtering of the p.d.f.
was used to compute terms involving derivatives of the p.d.f. After these steps, it
was found that the slope of the reconstructed spectrum did not change appreciably
as additional terms in the expansion (4.28) were added. Note that in general the
method calls for the (p + k + ν)th derivative of the temperature state relation. By
assuming a discontinuous state relation, the (p + k + ν − 3)th derivative of the
probability distribution is needed to evaluate the truncated sums. It was observed
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Figure 25. Reconstructed temperature spectra (�) from the mixture fraction spectra against
the temperature spectra (�) at the four planes for Case B.

that the smaller dataset available in cases B, C and C′ contributed more error to
these approximations and, in consequence, the reconstructed spectra suffered some
degradation.

Figures 25–28 show the reconstructed and original compensated temperature
spectra for all reactive cases at all planes considered across the shear layer. In
particular, the spectra in the dissipation subrange of case D collapse relatively well.
This is an improvement with respect to the approach discussed in the previous
subsection using mixing analogies. Inspection of the relative importance of the
different terms in (4.28) reveals that in the centre of the wavenumber range, the E1D

11

term dominates the sum, explaining why the temperature spectra seem to collapse
well in that subrange when normalized with large-scale turbulent quantities. However,
the spectra of the higher moments in the dissipation subrange cannot be neglected
in the sum, leading to the slower decay observed in planes Ps and P0 of figure 21.
It is also observed that for those planes away from the centre of the shear layer,
the contributions from the terms involving the derivatives of the p.d.f. are small.
Correspondingly, the decay of the temperature spectrum in the dissipation subrange
resembles that of the mixture fraction. Alternatively, for those planes close to the
stoichiometric surface, the derivatives of the p.d.f. at the stoichiometric location are
not small and this leads to larger contributions of the higher-order moment terms,
which in turn leads to a reduced decay in the dissipation subrange. The change in
the rate of decay of the spectrum closer to the flame sheet can thus be explained by
enhanced contribution of higher moment terms in the sum, (4.28), and by a change
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Figure 26. Reconstructed temperature spectra (�) from the mixture fraction spectra against
the temperature spectra (�) at the four planes for Case C.

in the higher-order moment terms themselves owing to heat release. Both effects are
observed here.

4.5. Velocity–temperature cospectra

The behaviour of the cospectra of temperature–velocity fluctuations in the middle of
the wavenumber range is similar to that of the mixture fraction–velocity fluctuation
cospectra. However, the same lack of collapse of the spectra in the dissipation
subrange (taken at different planes across the shear layer) that was observed for the
temperature autospectra is observed here. Figure 29 shows cospectra at all the planes
considered for all reactive cases. The spectra have been non-dimensionalized using
the scaling in (3.4) with the mixture fraction gradient replaced by the temperature
gradient ST according to

C1D
u1T

∝ −ST ε̃1/3κ
−7/3
1 . (4.36)

The analysis developed previously to relate the behaviour of the temperature
autospectrum can also be generalized to address the behaviour of the cospectrum. An
expansion similar to that leading to (4.24) shows that the velocity–temperature cross-
spectra can be inferred from the two-point temperature–velocity cross-correlation
according to

R1D
uiT

(r1) =

∞∑
p,k=0

cpkZ
p

p!k!
Z′(x + e1r1)ku

′
i(x). (4.37)



104 R. Knaus and C. Pantano

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

10–2

10–1

100

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

10–2

10–1

100

P0 P2

Ps

χ̃ T
–
1
ε̃1

/3
κ

1
5
/3

E
T1
D

κ1η
~

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

10–2

10–1

100

χ̃ T
–
1
ε̃1

/3
κ

1
5
/3

E
T1
D

κ1η
~

κ1η
~

(a) (b)

(c)

Figure 27. Reconstructed temperature spectra (�) from the mixture fraction spectra against
the temperature spectra (�) at the four planes for Case C′.

This expression can then be used to determine the cospectrum, giving

F 1D
uiT

(κ1) =

∞∑
p,k=0

cpkZ
p

p!k!
μ̂∗

kûi . (4.38)

As was discussed in § 3.3, the limited sampling of the simulation data contributed to
substantially larger variability in the cospectra, as opposed to the better quality of the
autospectra. In consequence, the reconstruction of the cospectra was not as accurate
as that of the temperature autospectra and it is therefore not shown.

5. Conclusions
An analysis of the turbulence, mixture fraction and temperature spectra from DNS

of turbulent non-premixed reacting shear layers under different levels of heat release
(accomplished by varying dilution and fuels) using the infinitely-fast-chemistry limit is
presented. In the case of the velocity and mixture fraction fields, the simulations show
that scaling of the spectra based on Favre-averaged statistics, turbulence dissipation
and scalar dissipation is able to collapse all the profiles across the shear layer quite
well. This appears to apply in the middle of the wavenumber range and dissipation
subranges of the spectra of all the simulations. This implies that when the effect of
heat release is appropriately taken into account by the large-scale changes of the
flow induced by the density variation, and reflected by the turbulence statistics, only
very weak effects remain at the smallest scales of the flow (in terms of two point
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Figure 28. Reconstructed temperature spectra (�) from the mixture fraction spectra against
the temperature spectra (�) at the four planes for Case D.

statistics). This is observed to apply for both the turbulence energy spectra and the
mixture fraction spectra but not for the temperature in the dissipation subrange. It
appears that the peculiarities observed in the dissipation subrange of the temperature
spectra are related to the mixture fraction spectra through the known nonlinear (state)
relationship for non-premixed two-stream combustion systems. An analogy with high-
Schmidt-number mixing theories and a mathematical analysis are used to explore the
relationship between the spectra of the mixture fraction, its moments and its one-point
p.d.f. to the temperature spectrum. A rescaling of the temperature spectra using an
overall rate of dissipation of temperature fluctuations and a temperature dissipation
length scale is able to collapse the spectra in the dissipation subrange for all but
one of the simulations. The second, more general technique allows a reconstruction
of the temperature spectra from the mixture fraction spectra and shows that all
cases are in relatively good agreement with the theory. The reconstruction reveals
that the behaviour of the temperature spectrum reflects only the nonlinear nature
of the relationship between mixture fraction and temperature. Moreover, different
exponential decay rates in the dissipation subrange at different locations across the
shear layer are attributed to different phase interactions of the mixture fraction
moment spectra.

These results have implications for modelling of turbulent reacting flows where
concepts extrapolated from constant-density incompressible flows appear to be
relevant in describing some aspects of the statistics of reacting flows. The present
results pertain only to non-premixed reacting flows and therefore shed no light on
statistics of premixed reacting flows.
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Figure 29. Temperature–velocity cospectra at different planes across the shear layer at the
end of simulations for planes P0 (�), P1 (�), P2 (�) and Ps (�).
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